In-situ high temperature X-ray diffraction study of Fe/Al2O3 interface reactions

T. FUJIMURA, S.-I. TANAKA

Tanaka Solid Junction Project, ERATO, Japan Science and Technology Corporation, 1-1-1 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan E-mail: to-fujimura@kawasaki-steel.co.jp

In-situ experiments on the Fe/Al₂O₃ interface reaction were carried out with a high temperature X-ray diffractometer capable of measuring the X-ray diffraction pattern in 1–4s, using an imaging plate. The kinetic formation processes of the interface reaction layer were measured in short-period exposure experiments using the apparatus. The time-temperature phase diagram of Fe/Al_2O_3 in air was determined. FeAl₂O₄ was formed at the Fe/Al₂O₃ interface between 1595 K and 1675 K in air. The formation of FeAl₂O₄ obeyed the parabolic rate law. The value of the activation energy suggests that the diffusion of Al into FeA I_2O_4 controls the rate of formation. The results of thermal expansion coefficient measurements suggest that when a sample is cooled to room temperature, compressive strain caused by FeAl₂O₄ occurs on Al₂O₃. \odot 1999 Kluwer Academic Publishers

1. Introduction

It is important that the properties of the metal-oxide interface for the production of MOS devices are investigated. Al_2O_3 is a typical oxide ceramic, and it is expected that Fe exhibits strong activity at the metaloxide interface [1]. Therefore, particular attention is paid to the $Fe/Al₂O₃$ system.

The interface reactions of Fe/Al_2O_3 have been investigated by several researchers [1–5]. The investigations have concentrated on carrying out measurements of microstructures and phases after the reaction. However, *in-situ* experiments are necessary to reveal the elementary reaction processes in detail. In such experiments, X-ray diffraction methods have the advantage of being able to observe crystal structure changes during the $Fe/Al₂O₃$ interface reaction.

In this paper, *in-situ* experiments on the Fe/Al_2O_3 interface reaction are described. These experiments were carried out with a high temperature X-ray diffractometer [6, 7], which is capable of measuring the X-ray diffraction pattern in 1–4s using an imaging plate to elucidate (1) the elementary formation processes of the reaction layer, (2) the relationship between time and temperature during phase transformation, (3) the reaction control factor based on the activation energy of the reaction layer, and (4) the thermal stress relationship between the reaction layer and the substrate (Al_2O_3) .

2. Experimental procedure

Polycrystalline α -Al₂O₃ (purity 99.5%; Toshiba Corporation) was cut into pieces measuring $20 \text{ mm} \times$ $10 \text{ mm} \times 0.5 \text{ mm}$. These were polished with a diamond whetstone and cleaned in acetone for use as substrates. An Fe (purity 99.99%) thin film was deposited on the substrate by means of vacuum deposition at 1×10^{-3} Pa. The thickness of the thin film was 0.2 μ m.

Fig. 1 shows the schematic of a high temperature X-ray diffractometer [6, 7], which consists of a Seemann-Bohlin camera [8] and an imaging plate (IP) [9]. Because the Seemann-Bohlin camera is a parafocusing camera that produces high intensity diffraction lines and because the two-dimensional IP has good X-ray sensitivity, this high temperature system can record complete diffraction patterns in 1–4s [6, 7]. Using Co X-rays at 50 kV and 160 mA filtered by an Fe filter, a peak intensity of approximately 5000 counts is obtained from the (104) reflection of Al_2O_3 , using a 4s exposure.

The samples were heated from room temperature to between 1574 K and 1675 K at a rate of 60 K/min, held at that temperature for 1 h, and then cooled to room temperature. This heating process was performed in air. The *in-situ*measurements were carried out with repeated exposures (exposure time: 4s) during the heating process.

3. Results and discussion

3.1. Formation of reaction layer

Fe (α -Fe) changed to Fe₂O₃ (α -Fe₂O₃) during heating in air and only $Fe₂O₃$ existed at 1574 K. Fig. 2 shows the X-ray diffraction patterns of Fe/Al_2O_3 held at 1595 K for 1 h in air. There are dead angles at the center of the diffraction patterns because the apparatus uses two sheets of IP. $Fe₂O₃$ was found at the middle of heating, and $FeAl₂O₄$ was formed in approximately 40 min at this temperature. Fig. 3 shows the X-ray diffraction patterns of Fe/Al_2O_3 held at 1675 K for 1 h in air. The intensity of the $Fe₂O₃$ diffraction peaks diminished with time, and all $Fe₂O₃$ changed to $FeAl₂O₄$ after about 1 h.

Figure 1 Schematic of the high temperature X-ray diffractometer [6, 7].

In-situ experiments were carried out at 1634 K and 1656 K in air. Fe₂O₃ and FeAl₂O₄ were formed in the same way as above. Fig. 4 shows a time-temperature phase diagram of $Fe/Al₂O₃$ in air. Note that these results were obtained under the experimental conditions in this work.

The above observations suggest that $Fe₂O₃$ is formed by the reaction and bonding between Fe and oxygen in air, while $FeAl₂O₄$ is formed by the reaction between $Fe₂O₃$ and $Al₂O₃$ at the interface, and the reaction formulas are Fe + $(3/4)O₂$ (in air) $\rightarrow (1/2)Fe₂O₃$ and $(1/2)Fe₂O₃ + Al₂O₃ \rightarrow FeAl₂O₄ + (1/4)O₂$ (in air). A model of these reactions is shown in Fig. 5. The diffusion path from Al_2O_3 to Fe_2O_3 is thought to be Al_2O_3 \rightarrow FeAl₂O₄ \rightarrow Fe₂O₃ on the basis of the phase diagram of Fe-Al-O reported by Trumble [10], where $Fe₂O₃$ is formed by the reaction between Fe and $(3/4)O₂$ (in air).

Table I shows a comparison of the experimental results obtained by us and by others. There are differences in the formed phases, such as whether an interlayer is formed or not, whether a high or a low vacuum is used, and whether pressing is used or not. When the interlayer was FeO or Fe $+$ FeO compound, Fe(Fe, Al)₂O₄ was formed, according to Sakata *et al*. [5]. In this work, Fe that was oxidized in air changed to $Fe₂O₃$, which reacted with Al_2O_3 to form FeAl₂O₄. Therefore, it is possible that the diffusion path of this work is different from that of the work by Sakata *et al*. The interlayer depends on the atmosphere and the presence of FeO in the reaction system.

3.2. Activation energy of $FeAl₂O₄$ growth

In order to determine the growth rate of the $FeAl₂O₄$ layer at 1634 K, 1656 K, and 1675 K from the time history of the integrated intensity of (220) reflection of $FeAl₂O₄$, the time history of the thickness of the $FeAl₂O₄$ layer at each temperature was calculated. It was assumed that the thickness of the $FeAl₂O₄$ layer, formed from all of the deposited Fe, corresponds to the integrated intensity of (220) reflection of $FeAl₂O₄$ when the reaction layer of $FeAl₂O₄$ was completely formed. However, in this calculation, the effects of thermal expansion were ignored because the values were compared with those obtained in thermal treatment experiments performed by other researchers. The relationship between the square of the thickness (x) of FeAl₂O₄ layers at each temperature and time (*t*) is shown in Fig. 6. It is apparent that the parabolic rate law $(x^2 = Kt)$; *K*: rate constant) [11] is upheld.

Because *K* is proportional to the diffusion coefficient,

$$
\log K = 0.4343 \left(-\frac{Q}{RT} \right) + A
$$

where 0.4343 is the conversion constant from natural logarithm to common logarithm, *Q* is the activation energy, *R* is the gas constant, *T* is the temperature, and *A*

Angle, 2 θ /degrees [Co-K α]

Figure 2 X-ray diffraction patterns of Fe/Al₂O₃ held at 1595 K for 1 h in air. Fe₂O₃ was present at the beginning, and FeAl₂O₄ was formed in approximately 40 min.

TABLE I Comparison of the experimental results obtained from this work and other works

Figure 3 X-ray diffraction patterns of Fe/Al₂O₃ held at 1675 K for 1 h in air. All Fe₂O₃ changed to FeAl₂O₄ after about 1 h.

is a constant. *Q* is obtained from the gradient of log *K* and 1/*T* . Fig. 7 shows the relationship between log *K* and $1/T$ for the growth of $FeAl₂O₄$ in our experiments. The value of *Q* was 458 kJ/mol. According to the experiments of Halloran and Bowen [12], the *Q* value for Fe diffusion in FeAl₂O₄ in an atmosphere of $CO_2/CO =$ 0.1 was 273 kJ/mol . The *Q* value for FeAl₂O₄ layer growth in experiments of carbon steel/Cu/Al₂O₃ in an atmosphere of 400 Pa conducted by Naka and Okamoto [4] was 269 kJ/mol. These previously reported *Q* values differ from our value, because our work was performed in air. When Paladino and Kingery [13] measured Al diffusion into Al_2O_3 in air, the Q value was 477 kJ/mol, which is close to our value. It can therefore be inferred that Al diffusion into $FeAl₂O₄$ controls the reaction rate when the sample is held at a high temperature in air.

Figure 4 Time-temperature phase diagram of Fe/Al_2O_3 in air obtained in this work.

Figure 5 Formation model of $FeAl₂O₄$ at $FeAl₂O₃$ interface in air. The reaction formulas are Fe + $(3/4)O₂$ (in air) \rightarrow $(1/2)Fe₂O₃$ and $(1/2)Fe₂O₃ + Al₂O₃ \rightarrow FeAl₂O₄ + (1/4)O₂$ (in air).

Figure 6 Relationship between the square of thickness (x) of FeAl₂O₄ layers at each temperature and time (*t*). The parabolic rate law is upheld.

3.3. Strain at interfaces

The average strains around the interfaces were verified, taking into account the reported values of the thermal expansion coefficients. Table II shows the thermal expansion coefficients evaluated from the lattice constants of Al_2O_3 , Fe, Fe₂O₃, and FeAl₂O₄, which were calculated from the X-ray diffraction angles at different temperatures. The reference values [14–17] are shown for comparison. The value for $FeAl₂O₄$ is close to those for Fe and Fe₂O₃ and is larger than that for Al_2O_3 .

TABLE II Thermal expansion coefficients evaluated from the lattice constants of Al_2O_3 , Fe, Fe₂O₃ and FeAl₂O₄, which were calculated from the X-ray diffraction patterns at different temperatures. Reference values [14–17] are shown for comparison

Material (system)	Thermal expansion coefficient ($\times 10^{-4}$ /K)		
	a	c	Reference
α -Al ₂ O ₃ (Hexagonal)	0.08	0.09	$a:0.08$, $c:0.09$ [14]
α -Fe (Cubic)	0.14		$a:0.12$ [15]
α -Fe ₂ O ₃ (Rhombohedral)	0.12	0.10	$a:0.12, c:0.07$ [16]
FeAl ₂ O ₄ (Cubic)	0.13		a:0.09 [17]

Figure 7 Relationship between log *K* and 1/*T* for the growth of FeAl₂O₄. Activation energy was estimated as 458 kJ/mol.

It is thought that as a sample cools to room temperature, compressive strain caused by $FeA1₂O₄$ occurs on $Al₂O₃$.

4. Conclusions

In-situ high temperature X-ray diffraction experiments were carried out on the $Fe/Al₂O₃$ interface reaction. The following conclusions were reached:

1. The kinetic formation processes of the interface reaction layer were measured by short-period exposure experiments using a high temperature X-ray diffractometer.

2. The time-temperature phase diagram of Fe/Al_2O_3 in air was determined. $FeAl₂O₄$ was formed at the Fe/Al_2O_3 interface between 1595 K and 1675 K in air. The elementary reaction processes were $Fe + (3/4)O₂$ (in air) \rightarrow (1/2)Fe₂O₃ and (1/2)Fe₂O₃ + Al₂O₃ \rightarrow $FeAl₂O₄ + (1/4)O₂$ (in air). Note that these results were obtained under the experimental conditions in this work.

3. The formation of $FeAl₂O₄$ obeyed the parabolic rate law. The activation energy was 458 kJ/mol. This

value suggests that the diffusion of Al into $FeAl₂O₄$ controls the rate of formation.

4. The results of thermal expansion coefficient measurements suggest that when a sample is cooled to room temperature, Al_2O_3 is compressed by FeAl₂O₄ at the interface.

Acknowledgements

The authors would like to thank Dr. K. Yoshioka and Mr. M. Sakai of Kawasaki Steel Corporation for their help in the experiments.

References

- 1. M. L. COLAIANNI, P. J. CHEN and J. T. YATES, JR., *Surf. Sci*. **238** (1990) 13.
- 2. I. OKAMOTO, M. NAKA, K. ASAMI and K. HASHIMOTO, *Trans. JWRI* **11** (1982) 131.
- 3. K. SUGANUMA, T. OKAMOTO, M. SHIMADA and M. KOIZUMI, *J. Am. Ceram. Soc*. **66** (1983) C-117.
- 4. M. NAKA and I. OKAMOTO, Quart. *J. Jpn. Welding Soc*. **3** (1985) 702.
- 5. K. SAKATA, K. HONMA, K. OGAWA, O. WATANABE and K. NII, *J. Mater. Sci*. **21** (1986) 4463.
- 6. T. FUJIMURA and ^S .-I. TANAKA, *Acta Mater*. **45** (1997) 4917.
- 7. *Idem*. *Acta Mater.* **46** (1998) 3057.
- 8. H. P. KLUG and L. E. ALEXANDER, in "X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials" (John Wiley & Sons, Inc., New York, 1954) p. 211.
- 9. Y. AMEMIYA, S. KISHIMOTO, T. MATSUSHITA, Y. SATOW and M. ANDO, *Rev. Sci. Instrum*. **60** (1989) 1552.
- 10. K. P. TRUMBLE, *Acta Metall. Mater*. **40** (1992) S105.
- 11. F. S. PETTIT, E. H. RANDKLEV and E. J. FELTEN, *J. Am. Ceram. Soc*. **49** (1966) 199.
- 12. J. W. HALLORAN and H. K. BOWEN, *J. Am. Ceram. Soc*. **63** (1980) 58.
- 13. A. E. PALADINO and W. D. KINGERY, *J. Chem. Phys*. **37** (1962) 957.
- 14. I. E. REIMANIS, K. P. TRUMBLE, K. A. ROGERS and B. J. DALGLEISH, *J. Am. Ceram. Soc*. **80** (1997) 424.
- 15. Y. ISHIDA, J. WANG and T. SUGA, *Acta Metall. Mater*. **40** (1992) S289.
- 16. L. PETRAS , A. PREISINGER and K. MEREITER, *Mater. Sci. Forum* **228–231** (1996) 393.
- 17. D. TAYLOR, *Br. Ceram. Trans. J*. **84** (1985) 121.

Received 27 August and accepted 27 August 1998